Diterpenoids from the Fruits of Rhododendron molle

Can-Jun Li, Li-Quan Wang, Shao-Nong Chen, and Guo-Wei Qin*

Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China

Received January 12, 2000

Four new diterpenoids, rhodomolleins XV (1), XVI (2), XVII (3), and XVIII (4), together with three known diterpenoids, kalmanol and rhodojaponins III and VI, were isolated from the dried ripe fruits of *Rhododendron molle*. Their structures were elucidated on the basis of spectroscopic data interpretation.

Rhododendron molle G. Don (Ericaceae), a well-known poisonous plant, is widely distributed in southern regions of the People's Republic of China.¹ Both the flowers and fruits of this plant have been recorded in ancient and modern monographs as analgesics and insecticides in traditional uses. Literature investigation has shown that seven diterpenoids, rhodojaponins II, III, and VI, rhodomolleins I and III, grayanotoxin III, and kalmanol, have been isolated from the plant.²⁻⁵ Since 1972, rhodojaponin III, the major component of this plant, has proven to be an effective principle in medicinal practice.⁶ In animal experiments and clinical trials, rhodojaponin III exhibited significant blood pressure lowering and heart rate slowing effects. In the treatment of 129 cases of hypertensive disease by intravenous drip or direct intravenous injection at doses of 1.0 and 2.0 mg, blood pressure was lowered by 28.2% and 34.4%, respectively.⁶ The antihypertensive effect of rhodojaponin III involves central α_2 -adrenoceptors.⁷ Rhodojaponin III has shown strong antifeedant, growth inhibitory, and insecticidal activities against larvae of Leptinotarsa decemlineata and Spodoptera frugiperda, while grayanotoxin III and kalmanol were less active than rhodojaponin III as insect antifeedants.² The biological activity associated with these compounds encouraged us to reinvestigate the chemical constituents of the plants. In the course of our study on the fruits of the plant we have isolated three known diterpenoids, kalmanol, rhodojaponins III and VI, and four new diterpenoids, rhodomolleins XV (1), XVI (2), XVII (3), and XVIII (4), whose isolation and structural elucidation are the subject of this paper.

Results and Discussion

An EtOAc-soluble fraction of the EtOH extract was subjected to repeated column chromatography on Si gel, Sephadex LH-20, and Lichroprep RP-18 to give four new diterpenoids, 1-4, along with the known compounds, kalmanol,^{2,8} rhodojaponin III,³ and rhodojaponin VI,³ which were identified by spectral data comparison with literature values. Rhodomollein XV (1) was assigned a molecular formula of C₂₀H₃₂O₆ on the basis of negative-ion HRFABMS and NMR data. The IR spectrum showed characteristic absorptions for hydroxyl (3429 cm⁻¹) and ketone (1718 cm⁻¹) groups. The ¹H NMR spectrum (Table 1) contained four methyls (δ 1.49, 1.52, 1.78, and 1.85) and one oxygenated methine proton (δ 5.11). The ¹³C NMR and DEPT spectra (Table 1) showed the presence of four methyls, five methylenes, five methines (one oxygenated), and six quaternary carbons (four oxygenated and one carbonyl). The above data suggested that 1 was a diterpenoid compound.

Previous investigation has reported a series of grayanane diterpenoids and kalmanol isolated in this plant. The $^{1}H-^{1}H$ COSY spectrum of **1** indicated the connectivities for a

five-membered ring fragment, $-CH-CH_2-CH_2-CH-CH-$, which differed from ring A or D in the grayanoids, but conformed to the ring C pattern of kalmanol. A close resemblance was apparent in the ¹H and ¹³C NMR data of **1** (Table 1) and kalmanol.^{2,8} However, there was an absence of the C-3 oxygenated methine signal in the ¹H NMR spectrum of **1**, while a ketone carbon (δ 221.8 s) for C-3 was observed in the ¹³C NMR spectrum. Thus, **1** was

^{*} To whom correspondence should be addressed. Tel.: +86-21-64311833. Fax: +86-21-64370269. E-mail: gwqin@mail.shcnc.ac.cn.

Tabl	le 1	. ¹ H	[and	^{13}C	NMR	Data	for	Compound	ls 1	l-4	in	$C_5 D_5 N^a$
------	------	------------------	-------	----------	-----	------	-----	----------	------	-----	----	---------------

	1		2		3		4	
	proton	carbon	proton	carbon	proton	carbon	proton	carbon
1	3.29 (dd, 7.4, 10.3)	46.0 d	3.09 (d, 8.6)	56.9 d	3.30 (t, 9.9)	65.2 d	3.42 (d, 10.8)	52.4 d
2α	3.25 (d, 10.3)	39.2 t		80.9 d	2.60 (ddd, 4.7, 9.9, 14.3)	36.6 t	5.06 (dd, 10.8, 3.4)	75.0 d
2β	3.23 (d, 7.4)		5.23 (dd, 8.6, 4.5)		2.76 (dd, 9.9, 14.3)			
3		221.8 s	4.20 (d, 4.5)	86.7 d	4.06 (br s)	82.6 d	3.90 (br s)	84.2 d
4		58.4 s		49.0 s		50.7 s		47.8 s
5		83.9 s		82.8 s		86.2 s		84.1 s
6	5.11 (d, 9.3)	71.9 d	4.46 (m)	71.7 d	4.37 (d, 9.9)	70.7 d	4.55 (dd, 11.0, 4.1)	74.7 d
7α	2.54 (d, 14.5)	44.0 t	2.70 (dd, 3.5, 13.4)	44.3 t	2.06 (d, 13.8)	50.1 t	2.96 (dd, 4.4, 13.4)	44.5 t
7β	3.04 (dd, 14.5, 9.3)		2.56 (dd, 10.2, 13.4)		3.47 (dd, 13.8, 10.3)		2.52 (m)	
8		83.0 s		50.8 s		46.5 s		52.9 s
9	2.88 (m)	53.1 d	2.33 (d, 7.0)	54.9 d	2.02 (d, 6.6)	59.8 d	2.20 (m)	56.9 d
10		76.1 s		78.2 s		77.6 s		78.6 s
11α	2.12 (m)	29.5 t	2.18 (m)	21.8 t	2.87 (m)	20.4 t	2.23 (m)	21.7 t
11β	1.96 (m)		1.66 (m)		1.79 (m)		1.64 (m)	
12α	1.86 (m)	31.2 t	2.69 (m)	27.4 t	1.81 (m	27.5 t	2.68 (m)	27.4 t
12β	1.09 (m)		1.76 (m)		1.78 (m)		1.80 (m)	
13	3.01 (m)	60.8 d	2.60 (m)	54.6 d	2.33 (m)	49.5 d	2.61 (br s)	56.7 d
14α	3.46 (t, 8.8)	54.8 d	6.38 (s)	83.6 d	2.22 (d, 12.1)	37.9 t	5.12 (br s)	79.7 d
14β					2.49 (dd, 4.6, 12.1)			
15α	2.07 (s)	53.6 t	2.43 (d, 14.0)	61.7 t	2.16 (d, 14.1)	60.6 t	2.33 (d, 14.0)	60.4 t
15β	2.07 (s)		2.39 (d, 14.0)		1.96 (d, 14.1)		2.15 (d, 14.0)	
16		80.2 s		79.2 s		78.2 s		79.9 s
17	1.49 (s)	23.8 q	1.60 (s)	24.2 q	1.62 (s)	24.9 q	1.60 (s)	24.1 q
18	1.52 (s)	24.7 q	1.68 (s)	26.7 q	1.33 (s)	22.6 q	1.24 (s)	23.2 q
19	1.78 (s)	19.2 q	1.65 (s)	20.2 q	1.85 (s)	21.7 q	1.79 (s)	20.2 q
20	1.85 (s)	24.1 q	1.97 (s)	29.2 q	1.67 (s)	23.6 q	2.18 (s)	31.4 q
acetyl				-		-		•
CH_3			2.06 (s)	21.3 q				
C=0				170.5 [°] s				
a 11 T	at 400 MIT 13C at 1	00 MIL-	tin nonentheese in II-					

^a ¹H at 400 MHz; ¹³C at 100 MHz; *J* in parentheses in Hz.

Table 2. NOESY NMR Data of 1-4 in C₅D₅N

proton	1	2	3	4
1	H-2, H-6, H-14	H-3, H-6, H-14, H-18	H-2, H-9	H-2, H-6, H-14
2α	H-1, H-18		H-1, H-2β, H-3, H-18, H-20	H-1, H-3, H-18
2β	H-1, H-20	H-3, H-20	H-1, H-2α, H-3	
3		H-1, H-2, H-18, H-19	H-2, H-18, H-19	H-2, H-18, H-19
6	H-1, H-7α, H-18,	H-1, H-18	Η-7α, Η-14α, Η-18, Η-20	H-1, H-18
7α	H-6, H-7 β , H-15	$H-7\beta$	H-6, H-7 β , H-14 β , H-15 α	H-7β, H-15α
7β	Η-7α, Η-9	Η-7α, Η-9	Η-7α, Η-9	Η-7α, Η-20
9	H-7 β , H-11 β , H-20	H-11 β , H-15 β , H-20	H-1, H-7b, H-11 β , H-15 β	H-11, H-20
11α	H-11 β , H-12	H-11 β , H-12 β	H-11β, H-12	$H-11\beta$
11β	Η-9, Η-11α, Η-12α	Η-11α, Η-17	H-9, H-11α, H-15β, H-17	Η-11α
12α	H-11, H-12 β , H-13	H-12 β , H-13,H-14	H-11, H-13	$H-12\beta$
12β	Η-11α, Η-12α, Η-17	Η-12α, Η-13, Η-17	H-17	H-12α, H-13, H-17
13	Η-12α, Η-14	H-12, H-14, H-17	H-12, H-14, H-17	H-12 β , H-17
14	H-1, H-13	Η-1, Η-12α, Η-13	H-6, H-7α, H-13, H-20	H-1, H-13
15	Η-7α, Η-17	H-9, H-17	Η-7α, Η-9, Η-17	Η-7α, Η-17
17	H-12 β , H-15	H-11 β , H-12 β , H-13, H-15	H-11 β , H-12 β , H-15 β	H-12 β , H-15 β , H-13
18	H-2α, H-6, H-19	H-1, H-3, H-6, H-19	H-2α, H-3, H-6, H-19, H-20	H-2, H-3, H-6, H-19
19	H-18	H-3, H-18	H-3, H-18	H-3, H-18
20	H-2β, H-9	H-2, H-9	Η-2α, Η-6, Η-14α, Η-18	H-7β, H-9

assigned as the 3-oxo derivative of kalmanol. Unambiguous assignments of the ¹H and ¹³C NMR signals of **1** (Table 1) were made by comparison with the values for kalmanol and were verified using various 2D NMR techniques, and the NOESY and HMBC data obtained are presented in Tables 2 and 3, respectively. These data confirmed the proposed structure of **1** as an analogue of kalmanol. To the best of our knowledge, kalmanol is the only diterpenoid previously known to possess a 5/8/5/5 (trans, trans, cis) ring system.^{2,8} Thus, rhodomollein XV (**1**) is the second example of compounds based on this rare diterpene skeleton.

Rhodomollein XVI (**2**) was obtained as an amorphous powder. The molecular formula was determined as $C_{22}H_{36}O_8$ by HRFABMS. Its IR spectrum indicated the presence of hydroxyl (3386 cm⁻¹) and ester carbonyl (1720 cm⁻¹) groups. The ¹H NMR spectrum (Table 1) showed four methyl singlets (δ 1.60, 1.65, 1.68, and 1.97), four oxygenated methines (δ 4.20, 4.46, 5.23, and 6.38), and one acetyl methyl (δ 2.06). Apart from the acetyl group (δ 21.3, 170.5), 20 carbon signals were observed in the ¹³C NMR spectrum (Table 1), including four methyls, four methylenes, seven methines (four oxygenated), and five quaternary carbons (three oxygenated). The ¹H-¹H COSY spectrum revealed the following fragments: -CHCH(OH)CH(OH)-, -CH(OH)CH₂-, and -CHCH₂CH₂CH-. These structural features suggested that 2 was a grayanane diterpenoid with seven sites of oxygenation. Furthermore, comparison of the ¹H and ¹³C NMR spectral data of 2 (Table 1) with those of rhodojaponin VI³ showed that both compounds were quite similar except for the data for H-14 and C-14. Thus, the H-14 signal of **2** (δ 6.38, s) was at lower field than that of rhodojaponin VI (δ 5.05, s), while the C-14 signal of **2** (δ 83.6) was shifted downfield by 3.7 ppm in comparison with that of rhodojaponin VI (δ 79.9). Moreover,

Table 3.	HMBC	NMR	Data	of 1-	- 4 in	$C_5 D_5 N$
----------	------	-----	------	-------	---------------	-------------

proton	1	2	3	4
1 2α	C-2, C-3, C-6, C-10, C-20 C-1, C-3, C-5, C-10	C-2, C-5, C-6, C-10, C-20	C-2, C-5, C-9, C-10, C-20 C-1, C-10	C-2, C-3, C-5, C-6, C-9, C-10, C-20 C-1, C-3, C-5, C-10
$\frac{2\beta}{3}$	C-1, C-3, C-5, C-10	C-1, C-3, C-4, C-10 C-1, C-2, C-5, C-18, C-19	C-3, C-4, C-5	C-1, C-5, C-18
6 7α 7β	C-5, C-6, C-8, C-14, C-15	C-1 C-5, C-6, C-8, C-9, C-15 C-5, C-6, C-8, C-9, C-15	C-5, C-6, C-8, C-9, C-14, C-15	C-1, C-7 C-5, C-6, C-8, C-9, C-15 C-5, C-6, C-8, C-9, C-14, C-15
9 11α	C-8, C-11, C-14 C-9, C-10, C-12	C-7, C-8,C-10, C-11, C-12, C-14 C-8, C-9, C-10, C-12, C-13	C-8, C-10, C-12, C-15, C-20 C-8, C-10, C-13	C-7, C-8, C-11, C-14, C-15, C-20 C-8, C-9, C-10, C-12, C-13
11β 12α	C-9, C-10, C-12, C-13, C-14 C-9, C-11, C-13, C-14	C-10, C-12, C-13 C-9, C-13	C-17	C-9, C-10, C-12, C-13 C-11, C-14, C-16
12β 13 14\alpha	C-11, C-13, C-16 C-8, C-12, C-16, C-8, C-9, C-10, C-12, C-13	C-13, C-16 C-8, C-11, C-12, C-14 C-9, C-12, C-15, C-16, C=0	C-17 C-13 C-15 C-16	C-11, C-14, C-16 C-8, C-11, C-12, C-15 C-15, C-16
14β 15α	C-7, C-8, C-13, C-14, C-16, C-17	C-7, C-8, C-13, C-14, C-16, C-17	C-9, C-12, C-13 C-8, C-9, C-13, C-16	C-7, C-8, C-9, C-13, C-14, C-16
15β 17	C-7, C-8, C-13, C-14, C-16, C-17 C-13, C-15, C-16,	C-7, C-8, C-13, C-14, C-16, C-17 C-13, C-16	C-8, C-9, C-14, C-17 C-13, C-15, C-16	C-7, C-8, C-13, C-14, C-16, C-17 C-13, C-15, C-16
18 19 20	C-4, C-5, C-19 C-4, C-5, C-18 C-1, C-10	C-3, C-4, C-5, C-19 C-3, C-4, C-5, C-18 C-1, C-9, C-10	C-3, C-4, C-5, C-19 C-3, C-4, C-5, C-18 C-1, C-9, C-10	C-3, C-4, C-5, C-19 C-3, C-4, C-5, C-18 C-1, C-9, C-10
CH_3	,	C=0	,,	,,

in the HMBC spectrum of **2** (Table 3), the carbonyl carbon signal at δ 170.5 correlated with the signal of H-14 at 6.38 ppm. All of these data suggested that **2** is the C-14 acetate of rhodojaponin VI. The relative stereochemistry of **2** was confirmed from the NOESY spectrum (Table 2).

Rhodomollein XVII (3), an amorphous powder, had the molecular formula C₂₀H₃₄O₅ on the basis of its negativeion HRFABMS and NMR data. It showed an IR absorption for the presence of hydroxyl groups (3377 cm⁻¹). The ¹H NMR spectrum of **3** (Table 1) showed for four methyls (δ 1.33, 1.62, 1.67, and 1.85) and two oxygenated methines (δ 4.02 and 4.37). The ¹³C NMR spectrum (Table 1) revealed the presence of four methyls, six methylenes, five methines (two oxygenated), and five quaternary carbons (three oxygenated). From the ¹H-¹H COSY spectrum the following fragments were observed: -CHCH2CH(OH)-, -CH-(OH)CH₂-, and -CHCH₂CH₂CHCH₂-, consistent with H-1 to H-3, H-6 to H-7, and H-9 to H-14 in a grayanane skeleton. The signal at δ 4.06 (br s) was assigned to H-3 because of the correlations of this signal to H-2, H-18, and H-19 in the NOESY spectrum (Table 2). The doublet signal at δ 4.37 (H-6 α) with J = 9.9 Hz correlated with H-18 and H-20 in the NOESY spectrum. The relative stereochemistry of 3 was also determined from the NOESY spectrum (Table 2). It has been reported that grayanane diterpenoids in general possess trans/cis/cis junctions for the 5/7/6/5 ring system, but a few representatives such as grayanoside C and pierisformosin A^{9,10} possess a cis/cis/cis configuration. In the latter case, H-1 has a β -orientation, resulting in a correlation with H-9 β in the NOESY spectrum. The NOE-SY spectrum of 3 (Table 2) revealed a correlation between H-1 (δ 3.30) and H-9 (δ 2.02), suggesting that H-1 has a β -orientation and ring A/B a cis junction. In addition, the presence of correlations between H-20/H-18, H-20/H-6, and H-20/H-14 α indicated that H-20, H-18, and H-6 all have an α -orientation. Further analysis of the NOESY spectrum led to the conclusion that H-9, H-17, and H-19 have a β -orientation and that H-3 has an α -orientation.

Rhodomollein XVIII (4) was assigned the molecular formula $C_{20}H_{34}O_7$ on the basis of negative-ion HRFABMS and NMR data. The IR spectrum showed a characteristic absorption for one or more hydroxyl groups (3373 cm⁻¹). The ¹H NMR spectrum (Table 1) included singlets for four methyls (δ 1.24, 1.60, 1.79, and 2.18) and four oxygenated methines (δ 3.90, 4.55, 5.06, and 5.12). From the ¹³C NMR spectrum (Table 1), 20 carbon signals were observed, including four methyls, four methylenes, seven methines

(four oxygenated), and five quaternary carbons (three oxygenated). The ¹H-¹H COSY spectrum revealed the following fragments: -CHCH(OH)CH(OH)-, -CH(OH)- CH_2 -, and $-CHCH_2CH_2CH(OH)$ -, establishing the proton sequence from H-1 to H-3, H-6 to H-7, and H-9 to H-14, respectively. All of the data obtained suggested that 4 is a gravanane diterpenoid with seven hydroxyls at C-2, C-3, C-5, C-6, C-10, C-14, and C-16. On comparing the ¹H and ¹³C NMR data of **4** with those of rhodojaponin VI,³ a known grayanoid with seven hydroxyl groups at the 2α , 3β , 5, 6β , 10α , 14, and 16α position (also obtained in the present investigation), a close resemblance was observed except for the NMR signals associated with the oxygenated C-2 and vicinal carbons, C-1 and C-3, as a result of the opposite configuration of C-2. The assignment of the C-2 hydroxyl in **4** as a β -substituent was evident because of the C-2 upfield shift in **4** (δ 75.0) relative to rhodojaponin VI (δ 80.9). In addition, H-2 of 4 correlated with H-1 α and H-18 in a NOESY experiment (Table 2). The ¹H and ¹³C NMR spectra of 4 (Table 1) were fully assigned by analysis of ¹H-¹H COSY, HMQC, HMBC, and NOESY experiments and by comparison of the NMR data with those of rhodojaponin VI. From the NOESY spectrum (Table 2), correlations between H-1/H-2, H-2/H-3, H-1/H-14, H-13/H-14, H-6/H-18, and H-3/H-18 were observed, suggesting that H-1, H-3, H-6, H-13, H-14, and H-18 are all α -orientated. Meanwhile, correlations between H-9/H-20, H-20/H-7 β , and H-15 β /H-17 revealed that H-9, H-17, and H-20 are all β -orientated. Rhodomollein XVIII (4) is the first grayanane diterpenoid that has been obtained with a β -hydroxyl group at C-2.

Experimental Section

General Experimental Procedures. The optical rotations were obtained on a Perkin-Elmer MC-241 polarimeter. IR spectra were recorded with a Nicolet Magna FTIR-750 spectrometer. Mass spectra were measured with a MAT-241 mass spectrometer. ¹H, ¹³C, and 2D NMR spectra were recorded using a Bruker AM-400 instrument. Chemical shifts are reported in ppm (δ) with solvent (C₅D₅N) signals used as internal standards.

Plant Material. The ripe fruits of *R. molle* were collected in Yingshan, Hubei Province, People's Republic of China, and identified by Prof. Zhi-Wei Wang of the Department of Pharmacognosy, Shanghai Medical University. A voucher specimen (No. SIMM97091203) has been deposited in the Herbarium of Shanghai Institute of Materia Medica.

Extraction and Isolation. The air-dried and ground ripe fruits of *R. molle* (6 kg) were defatted with CH_2Cl_2 (3 × 25 L)

three times. The residue (5.5 kg) was extracted with 70% EtOH three times at room temperature. The EtOH extract was evaporated under a vaccum to yield a black residue (400 g). The residue was suspended in water (4000 mL) and then extracted with petroleum ether, ethyl acetate, and *n*-butanol, successively. The EtOAc fraction (100 g) was applied to a Si gel column (200-300 mesh, 2 kg) and eluted with EtOAc containing increasing amounts of EtOH to afford 50 fractions. Fractions 6-9 (obtained with EtOAc-EtOH, 30:1) were combined after monitoring by TLC and then chromatographed on a Si gel H column, using CHCl₃-Me₂CO (2:1) as eluent, to give five fractions (1-5). Fraction 1 was purified over a Lichroprep RP-18 column with H_2O -MeOH (5:2) to yield 4 (18 mg). Fraction 2 was separated over Si gel with CHCl₃–MeOH (20: 1) and Lichroprep RP-18 with $H_2O-MeOH$ (2:1) to yield 2 (15) mg). Fraction 3 was chromatographed over a Lichroprep RP-18 column with water-tetrahydrofuran (7:2) and further purified over Sephadex LH-20 with absolute ethyl alcohol as eluent to yield 1 (5 mg). Compound 3 (6 mg) was obtained by applying fraction 4 to a Lichroprep RP-18 column with H₂O- Me_2CO (3:1) as eluent.

Rhodomollein XV (1): amorphous powder, $[\alpha]^{23}{}_D 36.4^{\circ}$ (*c* 0.22, EtOH); IR (KBr) ν_{max} 3430, 1718, 1379, 1109, 990 cm⁻¹; ¹H NMR (C₅D₅N), see Table 1; ¹³C NMR (C₅D₅N), see Table 1; FABMS *m*/*z* 391 [M + Na]⁺, 407 [M + K]⁺; negative-ion HRFABMS *m*/*z* 367.2097 [M - 1]⁻ (calcd for C₂₀H₃₁O₆, 367.2120).

Rhodomollein XVI (2): amorphous powder, $[\alpha]^{23}{}_D$ 8.7° (*c* 0.58, EtOH); IR (KBr) ν_{max} 3386, 1720, 1375, 1236, 1034, 756 cm⁻¹; ¹H NMR (C₅D₅N), see Table 1; ¹³C NMR (C₅D₅N), see Table 1; HRFABMS *m*/*z* 427.2332 [M – 1]⁺ (calcd for C₂₂H₃₅O₈, 427.2322).

Rhodomollein XVII (3): amorphous powder, $[α]^{23}_D$ 53.3° (*c* 0.30, EtOH); IR (KBr) $ν_{max}$ 3377, 2924, 1635, 1385, 1038 cm⁻¹; ¹H NMR (C₅D₅N), see Table 1; ¹³C NMR (C₅D₅N), see Table 1; FABMS *m/z* 377 [M + Na]⁺, 393 [M + K]⁺; negative-ion HRFABMS *m/z* 353.2258 [M - 1]⁻ (calcd for C₂₀H₃₃O₅, 353.2328).

Rhodomollein XVIII (4): amorphous powder, $[\alpha]^{23}_D - 28.5^{\circ}$ (*c* 0.35, EtOH); IR (KBr) ν_{max} 3373, 1632, 1446, 1041, 935 cm⁻¹; ¹H NMR (C₅D₅N), see Table 1; ¹³C NMR (C₅D₅N), see Table 1; FABMS *m*/*z* 409 [M + Na]⁺, 425 [M + K]⁺; negative-ion HRFABMS *m*/*z* 385.2287 [M - 1]⁻ (calcd for C₂₀H₃₃O₇, 385.2226).

References and Notes

- (1) Chen, J. S.; Zheng, S. *Chinese Poisonous Plants*; Science Press: Beijing, 1987.
- (2) Klocke, J. A.; Hu, M. Y.; Chiu, S. F.; Kubo, I. *Phytochemistry* 1991, 30, 1797–1800.
- (3) Liu, Z. G.; Pan, X. F. Acta Chim. Sin. (Engl. Ed.) 1989, 3, 235–239.
 (4) Chen, C. Y.; Liu, Z. G.; Pan, X. F.; Lian, H. S. Acta Chim. Sin. (Engl. Ed.) 1992, 50, 237–243.
- (5) Liu, Z. G.; Pan, X. F. Youji Huaxue 1990, 10, 187-190.
- (6) Mao, H. Y.; Tu, Y. S.; Nie, F. D.; Feng, Y. B. J. Wuhan Med. College 1981, 10, 88–90.
- (7) Chen, X. J.; Fan, H. Y.; Yao, Y. F.; Zhang, J. X. Acta Pharm. Sin. 1987, 8, 242–247.
- (8) Burke, J. W.; Doskotch, R. W.; Ni, C. Z.; Clardy, J. J. Am. Chem. Soc. 1989, 111, 5831–5833.
- (9) Wang, L. Q.; Ding, B. Y.; Zhao, W. M.; Qin, G. W. Chin. Chem. Lett. 1998, 9, 427–428.
- (10) Sakakibara, J.; Shira, W.; Iitaka, K. Phytochemistry 1980, 19, 1495-1497.

NP000009E